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Single image dehazing is a challenging problem, and it is far from solved. Most current solutions require
paired image datasets that include both hazy images and their corresponding haze-free ground-truth. How-
ever, in reality lighting conditions and other factors can produce a range of haze-free images that can serve
as ground truth for a hazy image, and a single ground truth image cannot capture that range. This limits the
scalability and practicality of paired methods in real-world applications.

In this paper, we focus on unpaired single image dehazing and reduce the image dehazing problem to an
unpaired image-to-image translation and propose an Enhanced CycleGAN Dehazing Network (ECDN). We
enhance CycleGAN from different angles for the dehazing purpose. We employ a global-local discriminator
structure to deal with spatially varying haze. We define self-regularized color loss and utilize it along with
perceptual loss to generate more realistic and visually pleasing images. We use an encoder-decoder archi-
tecture with residual blocks in the generator with skip connections so that the network better preserves the
details. Through an ablation study, we demonstrate the effectiveness of different modules in the performance
of the proposed network. Our extensive experiments over two benchmark datasets show that our network

outperforms previous work in terms of PSNR and SSIM.

1 INTRODUCTION

Haze is an atmospheric phenomenon that can cause
visibility issues, and the quality of images captured
under haze can be severely degraded. Hazy images
suffer from poor visibility and low contrast, which
can challenge both human visual perception and nu-
merous intelligent systems relying on computer vi-
sion methods.

The performance of standard computer vision
tasks such as object detection (Liu et al., 2016; Red-
mon et al., 2016), semantic segmentation (Long et al.,
2015), face detection, clustering and dataset cre-
ation (Yang et al., 2016; Anvari and Athitsos, 2019;
Lin et al., 2018; Lin et al., 2017) can be affected sig-
nificantly when images are hazy. Hence, image de-
hazing is an essential pre-processing task for general-
purpose computer vision algorithms that are fed with
hazy images. As a result, single image dehazing
has received a great deal of attention over the past
decade (Ancuti et al., 2016; Ancuti et al., 2010; Em-
berton et al., 2015; Meng et al., 2013; Tarel and Hau-
tiere, 2009; Ancuti et al., 2016; Ancuti et al., 2010;
Emberton et al., 2015; Meng et al., 2013; Anvari and
Athitsos, 2020; Tarel and Hautiere, 2009).
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Most of the recent image dehazing methods rely
on paired datasets, which means for each hazy im-
age there’s a single clean/haze-free image as a ground
truth. In practice, however, there is a range of clean
images that can correspond to a hazy image, due
to factors such as contrast or light intensity changes
throughout the day. In fact, it is infeasible to cap-
ture both ground truth/clear image and the hazy im-
age of the same scene simultaneously. Thus there is
an emerging need to develop solutions that do not rely
on the ground truth images and could operate with un-
paired supervision.

Single image dehazing methods can be catego-
rized into two main classes: prior-based methods and
learning-based methods. Prior-based models solve
the haze removal problem through estimating the
physical model, i.e. transmission map and atmo-
spheric light parameters. Learning-based methods
mainly use CNN-based or GAN-based models to re-
cover the haze-free images. These models take advan-
tage of large amount of training data to learn a model
that recovers the haze-free image of a hazy image.

In this paper, we focus on unpaired image dehaz-
ing and first cast the unpaired image dehazing prob-
lem to an image-to-image translation problem and
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(c) DehazeNet

Figure 1: A single image dehazing example. Our method
generates an image with less haze and rich details compared
with MSCNN and DehazeNet.

then propose a novel cycle-consistent generative ad-
versarial network, called ECDN, that operates with-
out paired supervision and benefits from (i) a global-
local discriminator architecture to handle spatially
varying haze (ii) an encoder-decoder generator ar-
chitecture with residual blocks to better preserve the
details (iii) skip connections in the generator to im-
prove the performance of the network and conver-
gence (iv) customized cyclic perceptual loss and a
self-regularized color loss to generate more realis-
tic images and mitigate the color distortion problem.
Through empirical analysis we show that the pro-
posed network can effectively remove haze and gen-
erate visually pleasing haze-free images.

Figure 1 shows the result of our method compared
to the current state-of-the-art methods. Our proposed
method removes haze more effectively and generates
a more realistic clean image compared to previous
work.

In summary, this paper presents the following con-
tributions:

e We propose a novel cycle-consistent generative
adversarial network called ECDN for unpaired
image dehazing. ECDN does not rely on any pri-
ors such as the physical scattering model, as op-
posed to many previous methods, and instead it
adopts the image-to-image translation approach
for unpaired image dehazing.

e We adopt a global-local discriminator structure to
deal with spatially varying haze and generate bet-
ter haze-free images.

e We define a self-regularized color loss and utilize
it along with a customized perceptual loss to gen-
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erate more visually pleasing images with vibrant
colors and mitigate the color distortion problem.
Self-regularization is vital to our network since in
unpaired setting there is no external supervision
available.

e We use an encoder-decoder generator architecture
with residual blocks with skip connections to bet-
ter preserve the details.

e Through empirical analysis, we show that our net-
work outperforms the previous work in terms of
PSNR and SSIM.

2 RELATED WORK

Numerous attempts have been done to solve the sin-
gle image haze removal problem. These methods can
be categorized into two main classes: prior-based and
learning-based, that we describe them below.

2.1 Prior-based Dehazing

Prior-based methods are mainly based on prior in-
formation and assumptions to recover the haze-free
images from hazy images. They heavily depend
on estimating the parameters of the physical scatter-
ing model (McCartney, 1976; Srinivasa and Shree,
2002), aka. the atmospheric scattering model, which
contains the transmission map and the atmospheric
light to solve the haze removal problem. The phys-
ical scattering model is formulated as:

1(x) = J()(x) +A(1 —1(x)) (1)

where /(x) is the hazy image, J(x) is the haze-free
image or the scene radiance, #(x) is the medium trans-
mission map, and A is the global atmospheric light on
each x pixel coordinates. He et al. (He et al., 2010)
proposed a dark channel prior to estimate the trans-
mission map effectively. Tan et al. (Tan, 2008) in-
crease the contrast of hazy images, based on the fact
that haze-free images have higher contrast than hazy
images.

2.2 Learning-based Dehazing

Recently learning based methods have been proposed
that utilize CNNs and GANS for the single image de-
hazing problem. CNN-based methods try to recover
the clean images through the atmospheric scattering
model, by mainly estimating the transmission map
and atmospheric light (McCartney, 1976; Narasimhan
and Nayar, 2000).



MSCNN (Ren et al., 2016) contains two sub-
networks called coarse-scale and fine-scale, to esti-
mate the transmission map. The coarse-scale net-
work estimates the transmission map and is further
improved locally by the fine-scale network. In De-
hazeNet (Cai et al., 2016), authors modified the clas-
sic CNN model by adding feature extraction and non-
linear regression layers. These modifications distin-
guish DehazeNet from other CNN-based models. The
All-In-One Dehazing Network (AOD-net) (Li et al.,
2017) proposed an end-to-end network that produces
the haze-free/clean images through reformulating the
atmospheric scattering model.

2.3 Generative Adversarial Networks

GANSs have become one of the most successful meth-
ods for image generation, manipulation, restoration,
and reconstruction. GANs have been used to super-
resolve images (Ledig et al., 2017), remove motion
blurriness from images (Kupyn et al., 2018), and re-
move noise (Chen et al., 2018), to name a few appli-
cations. GANSs are also utilized in image dehazing.
DDN was proposed as a disentangled dehazing net-
work without paired supervision (Yang et al., 2018).
The GAN that they proposed consists of three gener-
ators: one for generating haze-free image, one for the
atmospheric light, and the third generator for trans-
mission map.

The Cycle-consistent GAN (CycleGAN) (Zhu
et al., 2017) method was proposed for unpaired
image-to-image translation task and has gained sig-
nificant attention during the past couple of years. Cy-
cleGAN is utilized for image dehazing along with the
perceptual loss to generate more visually realistic de-
hazed images (Engin et al., 2018).

3 PROPOSED METHOD

First we reduce the unpaired image dehazing problem
to an image-to-image translation problem, and then
propose an Enhanced CycleGAN Dehazing Network
(ECDN) to translate a hazy image to a haze-free one.
Next we describe our network in details.

3.1 Overview of ECDN

Figure 2a demonstrates an overview of our proposed
network. On the left, you can see the two domains i.e.
hazy and haze-free, and the generator G4 which gen-
erates haze-free image of a hazy image and G which
does the backward translation from haze-free to hazy.

Enhanced CycleGAN Dehazing Network

We need these forward and backward transla-
tions to ensure the cycle consistency. At each
direction we have two discriminators i.e. Dgjopq and
Djycqr for each generator to enforce them to generate
more realistic and better haze-free images.

Right side of Figure 2a illustrates our proposed
network in forward and backward cycles. Top row
depicts the hazy to haze-free translation cycle and
how the components interact. x is the hazy image
and Gp(Ga(x)) is the reconstructed hazy image that
is used to calculate loss values i.e. cycle consis-
tency loss and cyclic perceptual loss. The bottom row
shows the backward cycle i.e. how the haze-free im-
age is reconstructed through the backward cycle. y
is the haze-free image and G4(Gg(y)) is the recon-
structed haze-free image that is used to calculate dif-
ferent loss values i.e. cycle consistency loss, cyclic
perceptual loss, and also self-regularized color loss.
We only use self-regularized color loss in the back-
ward cycle, since we want to make the haze free and
the reconstructed haze free images closer in terms of
color, and prevent color shifting and distortion.

Figure 2b depicts the network architecture of the
generator G4 and the global and local discrimina-
tors. G4 and Gp utilize the same network architecture.
Similarly all discriminators share the same network
architecture, however operate on different scales.

3.2 Generator

Figure 2b presents the architecture of ECDN model.
The architecture of generator G4 is depicted on the
left. Note that Gp has the same architecture as G4.
In order to generate a haze-free image without paired
supervision in a cycle-consistent manner, we require
a generator network that can preserve the images’
texture, structure and details while removing haze.
Therefore, we designed a network with three parts:
encoder, feature transformation, and decoder.

The encoder module starts with a convolution
layer followed by an Instance Normalization and Relu
non-linearity and two downsampling blocks. Fea-
ture transformation, has six Residual Blocks to extract
complex and deep features whilst removing haze. Go-
ing deeper in network helps it to become capable of
representing complex functions and also learn fea-
tures at many different levels of abstraction. Decoder
consists of two upsampling blocks which are decon-
volution layers, followed by Instance Normalization
and Relu. The deconvolution layers are used to re-
cover image structural details and convert the feature
maps to a haze-free RGB image. The upsampling
operations are performed through the deconvolution
layer to obtain intermediate feature mappings with
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(b) The architecture of ECDN. This figure shows the architecture of Gq, Dglab”l and Dlé”“’l. Gp, Dgl”b“l and Df;“’““l have the
same architecture as Gy, Dgl"b“l , Dé"““’ respectively, except that they work on different inputs, i.e., the input to Gp is a clean

image and the input to G4 is a hazy image.

Figure 2: The overview and architecture of ECDN.

double spatial size and half channels than its previous
counterpart.

We use skip links between corresponding layers
of different levels from encoder and decoder to guar-
antee better convergence. A skip connection before
downsampling, is also applied between input and out-
put of the feature transformation module, as shown in
Figure 2b.
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3.3 Discriminator

The right side of Figure 2b shows D§/°?@ and Diocal.
Note that Dgl"b“’ and Dﬁ"ml have the same architec-
ture as DG4 and DL°¢d! respectively. We have two
types of discriminators, global and local, each per-
forming a particular operation to classify real vs. fake
images. Initially our model contained only global dis-



criminators. However, we have observed that global
discriminators often fail on spatially-varying hazy im-
ages, i.e., in cases where haze density variation ex-
ists in an image.Thus we decided that different im-
age parts need to be enhanced differently. In order
to enhance each region of an image appropriately, in
addition to improving the haze removal globally, we
utilized a global-local discriminator scheme inspired
by (Jiang et al., 2019) in a cycle-consistent manner.

Global discriminator D§/°"? classifies if a haze-
free image generated by Gy is real or fake, based on
the entire image. Local discriminator D5/ classi-
fies if a haze-free image generated by G4 is real or
fake, based on 5 randomly cropped image patches
of size 64 x 64 pixels from that image.

3.4 Loss Functions

Our objective loss function contains:

e Adbversarial Loss for matching the distribution of
generated images to the data distribution in the
target domain.

e Cycle Consistency Loss to prevent the learned
mappings G4 and Gp from contradicting each
other.

e Cyclic Perceptual Loss to help the generators
generate more realistic and visually pleasing im-
ages.

o Self-regularized Color Loss to avoid color shift-
ing and artifacts in generated haze-free images
and also guide the generator to generate images
with vibrant colors.

The overall loss function for training ECDN is de-
fined as follows:

GAN+LCycle +

Lossiorar = glgbal + Llocal global

2

Cycle SRColor
Llocal + Lglobal + Llocal + Lglobal

Next we describe these loss functions in details.

3.4.1 Adversarial Loss

We adopted Least Squares GAN to calculate the ad-
versarial loss. Equations 3 and 4 show how we calcu-
late the adversarial loss for the global discriminators
and the global generators respectively.

LGlObal EXrNPreal [(D(Xr) - 1)2]+ (3)
Exjnpy [(D(xr) = 0])°]
LGZObaZ ExProge [(D(xf) — 1) ] “4)

Enhanced CycleGAN Dehazing Network

where D denotes the discriminator, and x, and xy
are sampled from the real and fake distribution re-
spectively.

We introduced the local discriminator to further
enhance hazy image and deal with spatially-varying
hazy images. Equations 5 and 6 depicts the corre-
sponding loss functions:

LLocal ExlN real—patches [(D(X,«) - 1)2]+
. ®

EfoPfakefpat(:hes [(D(.Xf) - O) ]
LLocal EfoP/ake patches [(D(Xf) - 1)2} (6)

where D denotes the discriminator, x, and xy are sam-
pled from patches taken from real and fake distribu-
tions.

3.4.2 Cycle Consistency Loss

Adpversarial loss can not guarantee that the learned
function can map an individual input x; to desired
output y;. Thus a cycle-consistency loss is pro-
posed by CycleGAN to reduce the space of possible
mapping functions. Cycle-consistency loss function
(L1 — norm) compares the cyclic image and the orig-
inal image in an unpaired image-to-image translation
process (Zhu et al., 2017). Cycle consistency loss is
defined as:

Lcycle (GA7 GB) = Ex’\‘pzlata(x) [” (GB(GA (x)) - x) ||] 1+

Eypiaay 11(Ga(Gr(y)) =¥y
(N

where G4 and Gp are forward and backward genera-
tors, x belongs to domain X (i.e. the original domain,
hazy images here) and y belongs to domain Y (i.e. the
haze-free images). Gp(Ga(x)) and G4(Gp(y)) are the
reconstructed images.

3.4.3 Self-regularized Color Loss

Hazy images usually lack brightness and contrast,
to improve these lacking features we define a self-
regularized color loss, inspired by (Wang et al., 2019)
to measure color difference between the haze-free im-
ages and the reconstructed images. We call it self-
regularized because we do not rely on the ground
truth image.

This loss function forces the generator to generate
images with the same color distribution as the haze-
free images. In addition, we observed that some of
the reconstructed images have color artifacts which
is an inherent problem of CycleGAN, this loss func-
tion was employed to deal with this problem as well.
Equation 8 shows color loss function.
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LSRColor = ZANGLE(GA(GB(y))payp) (8)
p

Where (), denotes a pixel; ANGLE is a function
that calculates the angle between two colors regarding
the RGB color as a 3D vector. y belongs to domain
Y (ie. faze-free images) and G4(Gp(y)) the recon-
structed haze-free image.

Eq. 8 sums the angles between the color vectors
for every pixel pair in G4(Gg(y)) and image y. The
reason that we use this color loss calculation instead
of an L2 distance in other color space is that the L2
metric only numerically measures the color differ-
ence, it cannot ensure that the color vectors have the
same direction and the formulation is simple and fast
for network computation.

3.4.4 Cyclic Perceptual Loss

Adversarial and cycle consistency losses are not able
to preserve the textual and perceptual information of
corrupted hazy images. Therefore, to achieve the per-
ceptual quality we employed a cyclic perceptual loss.
We utilized a pre-trained VGG16 model to extract
features and calculated the distance between the fea-
tures of hazy and reconstructed hazy images and also
haze-free and the reconstructed haze-free counter-
part using L2 norm (Simonyan and Zisserman, 2014).
Equation 9 shows this loss function .

The goal of this loss function is to preserve the
image structure and content features during dehazing
and generate more realistic images. To calculate this
loss, we focus on feature maps extracted from the ond
and 5" pooling layers of VGG-16 pre-trained model.
Equation 9 shows how this loss is calculated:

Losscp = [|(V88(Ga(Ga(x))) —Veg(x))ll, +
1(Veg(Ga(Ga(y))) —Veg))ll,

where G4 and Gp are forward and backward gen-
erators, x belongs to domain X (i.e. the original
domain, hazy images here) and y belongs to do-
main Y (i.e. the haze-free images). Gp(Ga(x)) and
G4(Gg(y)) are the reconstructed images. Vgg is a
VGG16 feature extractor from the second and fifth
pooling layers.

To calculate the L(L;‘I’D"“l for the local discriminator
we used the cropped local patches of input and output
images and used the same equation 9.

€))

4 EXPERIMENTS AND RESULTS

To evaluate the performance of our method compared
to previous paired and unpaired methods, we train
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a model on NYU dataset (Silberman et al., 2012)
and test it on NYU dataset and also Middlebury
dataset (Scharstein et al., 2014) as a cross-dataset to
show how our model generalizes. NYU contains 1449
hazy images paired with their ground truth images
and Middlebury contains 23 high-resolution(2k) hazy
images with their ground truth. Since our method uses
unpaired supervision, the training process received no
information about which haze-free image corresponds
to each hazy image.

4.1 Training

For training we need two sets of training datasets:
trainA includes hazy images and trainB includes
ground truth images (shuffled to simulate the un-
paired supervision similar to other unpaired meth-
ods (Yang et al., 2018)). We opted for Adam opti-
mizer (momentum = 0.5) with batch size of 1. Our
initial learning rate was 0.0002 for the first 100
epochs, with linear decay to zero over the next 100
epochs. We implemented our model in PyTorch us-
ing two NVIDIA Tesla P100 GPUs and trained our
network for 200 epochs.

4.2 Quality Measures

We used the following measurement metrics, to ana-
lyze the performance of our proposed method:

e PSNR: It measures the ratio between the maxi-
mum possible value of a signal and the power of
distorting noise that affects the quality of its rep-
resentation. The higher the PSNR, the more ef-
fective the reconstruction method is.

e SSIM: It is a Structural Similarity Index which
is a perceptual metric that quantifies image qual-
ity degradation caused by processing. In this
measurement, image degradation is considered as
the change of perception in structural informa-
tion (Kumar and Moyal, 2013).

o CIEDE2000: It measures the color difference be-
tween hazy and dehazed images; smaller values
indicate better color preservation, thus better de-
hazing and perceptual quality (Luo et al., 2001).

4.3 Ablation Study

To demonstrate the effectiveness of the local discrim-
inator, cyclic perceptual loss, and self-regularized
color loss, we perform several ablation experiments.

Figure 3 depicts a couple of examples on how
color loss helps with color artifacts removal. Employ-
ing color loss has enabled the network to remove arti-
facts effectively.



(a) w/o color loss (b) with color loss

Enhanced CycleGAN Dehazing Network

(c) w/o color loss (d) with color loss

Figure 3: Examples showing the importance of color loss in our model ECDN.

PSNR: 12.14, SSIM: PSNR: 13.43, SSIM: PSNR: 16.10, SSIM: PSNR: 19.11, SSIM:

0.74

0.74

0.90

(a) Hazy image

(b) CycleGAN

(c) Cycle-Dehaze

(d) Ours (e) Ground truth

Figure 4: Comparison between CycleGAN, Cycle-Dehaze and the proposed method.

Table 1: Ablation study over NYU dataset. The larger values of PSNR, SSIM and the smaller value of CIEDE2000 indicate

better dehazing and perceptual quality.

Setting TPSNR 1SSIM | CIEDE2000
CycleGAN 13.3879 0.5223 17.6113
ECDN w/o color loss 14.5402 0.7407 15.6401
ECDN w/o perceptual loss 14.6582 0.7312 15.6348
EDCN w/o residual blocks 14.1092 0.6923 16.4344
EDCN w/o local discriminator  14.0681  0.7111 = 19.9466
ECDN 16.0531 0.8244 14.9436
We compared our method with other cycle- 4.4 Quantitative and Qualitative

consistent unpaired image-to-image translation meth-
ods. Figure 4 shows the comparison between Cycle-
GAN, Cycle-dehaze and our method using an exam-
ple image from NYU dataset. As one can observe our
method removed more haze and the generated haze-
free images is closer to the ground truth image. The
red bounding boxes signify some parts of the image
with different amount of haze removed by these meth-
ods.

Table 1 depicts the results of our ablation study in
terms of PSNR, SSIM and CIEDE2000. One can ob-
serve that incorporating local discriminators can help
achieve better PSNR, SSIM and CIEDE2000, mean-
ing better restoration and generation of more visu-
ally pleasing results. The best results in terms of
PSNR, SSIM, CIEDE2000 are achieved when the lo-
cal discriminators, cyclic perceptual loss, and self-
regularized color loss are incorporated.

Analysis

We compare our model with both paired and unpaired
methods, on the NYU and Middlebury datasets. Our
method as well as the competitors are trained on the
NYU dataset, and tested on NYU dataset and Mid-
dlebury dataset as a cross-datase. Our method outper-
forms other methods in terms of SSIM and PSNR on
both NYU and Middlebury datasets.

Table 2 and 3 and show the results on NYU and
Middlebury datasets respectively. Our method outper-
forms the other methods in terms of SSIM and PSNR,
and is the second best in terms of CIEDE2000.

Figure 5 shows the results of our method com-
pared with other methods. DCP suffers from color
distortion and over-exposure. CycleGAN introduces
color artifacts and color shifting, and fails to re-
move much haze especially from dense hazy im-
ages. MSCNN and DehazeNet similarly fail to re-
move much haze from hazy images as well.
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Table 2: Results on NYU dataset. Some of the numbers for the previous work are taken from (Yang et al., 2018; Engin et al.,

2018).

Method TPSNR  1SSIM  |CIEDE2000
DCP (He et al., 2010) 10.9803 0.6458 18.9781
CycleGAN (Cai et al., 2016) 13.3879 0.5223 17.6113
Cycle-Dehaze (Engin et al., 2018)  15.41 0.66 19.04432
DDN (Yang et al., 2018) 15.5456 0.7726 11.8414
DehazeNet (Cai et al., 2016) 12.8426 0.7175 15.8782
MSCNN (Ren et al., 2016) 12.2669 0.7000 17.4497
Ours 16.0531 0.8244 14.9436

DehazeNet
\

Our method, on the other hand is able to gener-
ate more natural haze-free images which are much
closer to the ground truth image. Moreover, one
can observe that our model outperforms the above-
mentioned methods in recovery of details, and gener-
ates more natural images with least color artifacts.
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Figure 5: Comparison of the state-of-the-art dehazing methods on NYU dataset.

Ours

5 CONCLUSION

In this paper, we treated the image dehazing prob-
lem as an image-to-image translation problem, and
proposed a cycle-consistent generative adversarial
network, called ECDN, for unpaired image dehaz-
ing. ECDN utilizes discriminators with a local-global
structure and generators with an encoder-decoder ar-



Table 3: Results on Middlebury dataset. The numbers for
the previous work are taken from (Yang et al., 2018; Engin
et al., 2018).

Method TPSNR  1SSIM
DCP (He et al., 2010) 12.0234  0.6902
CycleGAN (Cai et al., 2016) 11.3037 0.3367
Cycle-Dehaze (Engin et al., 2018)  15.6016  0.8532
DDN (Yang et al., 2018) 14.9539 0.7741
DehazeNet (Cai et al., 2016) 13.5959 0.7502
MSCNN (Ren et al., 2016) 13.5501 0.7365
Ours 15.8747 0.8601

chitecture with residual blocks and skip links to re-
move haze effectively. It also leverages different loss
functions to generate realistic clean images. Using
two benchmark test datasets, we showed the effec-
tiveness of the proposed method. Our method out-
performs other methods in terms of PSNR and SSIM.
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